IBIS-Flora

Angiosperm Flora of India

Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis

Publication Type:Journal Article
Year of Publication:2013
Authors:Ren, X-L, Qi, G-N, Feng, H-Q, Zhao, S, Zhao, S-S, WANG, YI, Wu, W-H
Journal:The Plant Journal
Volume:74
Issue:2
Date Published:2013
ISBN Number:1365-313X
Keywords:AKT1, Arabidopsis thaliana, calcineurin B-like protein, CBL10, K+ channel, low-K+ stress
Abstract:

Potassium transporters and channels play crucial roles in K+ uptake and translocation in plant cells. These roles are essential for plant growth and development. AKT1 is an important K+ channel in Arabidopsis roots that is involved in K+ uptake. It is known that AKT1 is activated by a protein kinase CIPK23 interacting with two calcineurin B-like proteins CBL1/CBL9. The present study showed that another calcineurin B-like protein (CBL10) may also regulate AKT1 activity. The CBL10-over-expressing lines showed a phenotype as sensitive as that of the akt1 mutant under low-K+ conditions. In addition, the K+ content of both CBL10-over-expressing lines and akt1 mutant plants were significantly reduced compared with wild-type plants. Moreover, CBL10 directly interacted with AKT1, as verified in yeast two-hybrid, BiFC and co-immunoprecipitation experiments. The results of electrophysiological analysis in both Xenopus oocytes and Arabidopsis root cell protoplasts demonstrated that CBL10 impairs AKT1-mediated inward K+ currents. Furthermore, the results from the yeast two-hybrid competition assay indicated that CBL10 may compete with CIPK23 for binding to AKT1 and negatively modulate AKT1 activity. The present study revealed a CBL-interacting protein kinase-independent regulatory mechanism of calcineurin B-like proteins in which CBL10 directly regulates AKT1 activity and affects ion homeostasis in plant cells.

URL:http://dx.doi.org/10.1111/tpj.12123
Short Title:The Plant Journal
Fri, 2014-01-24 18:13 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith