IBIS-Flora

Angiosperm Flora of India

Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem

Publication Type:Journal Article
Year of Publication:2010
Authors:Perroni-Ventura, Y, Montaña, C, García-Oliva, F
Journal:Functional Ecology
Volume:24
Issue:1
Date Published:2010
ISBN Number:1365-2435
Keywords:available N, C and N immobilization in microbial biomass, C and N mineralization, fertility islands, nitrification, Parkinsonia, Parkinsonia praecox, Prosopis, Prosopis laevigata, Tehuacán-Cuicatlán Region
Abstract:

1. Biological nitrogen (N) fixation by symbiotic and free-living organisms is considered the main pathway for N soil enrichment in desert and semi-desert ecosystems. This fact is more noticeable in tropical ecosystems where legume species have a high relative abundance. However, this biological fixation pathway does not guarantee the maintenance of soil N pools, and N conservation pathways are important in understanding controls over soil N cycling. 2. In dryland ecosystems, desert plants can form a ‘fertility island’ (FI) as soils beneath plants show higher concentrations of N and organic matter. 3. Here we assess how carbon (C) and N may interact to conserve soil N within the FI soil of two legume species (Prosopis laevigata and Parkinsonia praecox), one a known N-fixer and the other believed not to fix N, as well as within adjacent bare ground soil. In a semi-arid tropical ecosystem in central Mexico, we examined spatial patterns in C and N pools and transformation rates, and we investigated seasonal variations in these relationships. 4. Results show that FI soil C and N could be linked to total N storage through net C and N immobilization in microbial biomass and heterotrophic microbial activity. Soil under P. laevigata canopy had greater total N as well as N accumulated in microbial biomass than soil under P. praecox and bare ground soil. Nevertheless, inorganic N and potential net N mineralization rates were similar under soils of both species, although we expected higher inorganic N and N-mineralization values in N-fixer species to explain the greater total N. Higher total N concentrations under P. laevigata probably result from greater inputs of organic C and a higher potential net C mineralization rate in comparison to P. praecox and bare ground soil. 5. Even though N input and output values were not measured, the results highlight the importance of assessing the role of organic C, heterotrophic microbial activity, and N storage in microbial biomass in order to understand controls over N retention in soil N cycling. Thus, soil C-N interactions could be a control factor of N soil conservation in this tropical semi-arid ecosystem.

URL:http://dx.doi.org/10.1111/j.1365-2435.2009.01610.x
Short Title:Functional Ecology
Fri, 2014-01-24 22:34 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith