IBIS-Flora

Angiosperm Flora of India

The Dendrochronology of Pinus elliottii in the Lower Florida Keys: Chronology Development and Climate Response

Publication Type:Journal Article
Year of Publication:2011
Authors:Harley, GL, Grissino-Mayer, HD, Horn, SP
Journal:Tree-Ring Research
Volume:67
Issue:1
Date Published:2011
ISBN Number:1536-1098
Keywords:Pinus
Abstract:

Abstract South Florida slash pine (Pinus elliottii var. densa) is the southernmost pine species in the United States and the foundation species of the globally endangered pine rockland communities in south Florida. To test if slash pine produces annual growth rings in the Lower Florida Keys, we counted the number of rings on samples collected from the North Big Pine Key site (NBP), which contained a fire scar from a known wildfire and a known date for hurricane-induced tree mortality (2006 or 2007). In addition, a crossdated tree-ring chronology (1871?2009) was developed from living trees and remnant wood found at the site and compared to divisional climate data to determine how the regional climate regime influences radial growth. Our analyses demonstrated that slash pine forms anatomically distinct, annual growth rings with the consistent year-to-year variability necessary for rigorous dendrochronological studies. Response-function and correlation analysis showed that annual growth of slash pine at NBP is primarily influenced by water availability during the growing season. However, no significant correlations were found between tree growth and the Atlantic Multidecadal Oscillation or the El Niño-Southern Oscillation. Our study reveals the potential of producing high-quality dendrochronological data in southern Florida from slash pine, which should prove useful in further studies on fire history and tree phenology and for assessing the projected impacts of impending climate change on the fragile pine rockland community.Abstract South Florida slash pine (Pinus elliottii var. densa) is the southernmost pine species in the United States and the foundation species of the globally endangered pine rockland communities in south Florida. To test if slash pine produces annual growth rings in the Lower Florida Keys, we counted the number of rings on samples collected from the North Big Pine Key site (NBP), which contained a fire scar from a known wildfire and a known date for hurricane-induced tree mortality (2006 or 2007). In addition, a crossdated tree-ring chronology (1871?2009) was developed from living trees and remnant wood found at the site and compared to divisional climate data to determine how the regional climate regime influences radial growth. Our analyses demonstrated that slash pine forms anatomically distinct, annual growth rings with the consistent year-to-year variability necessary for rigorous dendrochronological studies. Response-function and correlation analysis showed that annual growth of slash pine at NBP is primarily influenced by water availability during the growing season. However, no significant correlations were found between tree growth and the Atlantic Multidecadal Oscillation or the El Niño-Southern Oscillation. Our study reveals the potential of producing high-quality dendrochronological data in southern Florida from slash pine, which should prove useful in further studies on fire history and tree phenology and for assessing the projected impacts of impending climate change on the fragile pine rockland community.

URL:http://dx.doi.org/10.3959/2010-3.1
Short Title:Tree-Ring Research
Fri, 2014-01-24 22:03 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith