Angiosperm Flora of India

Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves

Publication Type:Journal Article
Year of Publication:2011
Authors:Tcherkez, G, MAHÉ, ALINE, Boex-Fontvieille, E, Gout, E, Guérard, F, Bligny, R
Journal:Plant Physiology
Date Published:2011
ISBN Number:00320889
Keywords:Xanthium, Xanthium strumarium

Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e. g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoeno/pyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using and 2 H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after ¹³ C-3-pyruvate feeding was consistent with ¹³ C redistribution from PEP via the PEPcarboxylase reaction. Furthermore, the deuterium loss in Glu after ² H 3 -¹³ C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out ² H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5 % o of the net CO₂ assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed.

Short Title:Plant Physiology
Fri, 2014-01-24 21:58 -- admin
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith