IBIS-Flora

Angiosperm Flora of India

A Gain-of-Function Mutation in the Arabidopsis Disease Resistance Gene RPP4 Confers Sensitivity to Low Temperature

Publication Type:Journal Article
Year of Publication:2010
Authors:Huang, X, Li, J, Bao, F, Zhang, X, Yang, S
Journal:Plant Physiology
Volume:154
Issue:2
Date Published:2010
ISBN Number:00320889
Abstract:

How plants adapt to low temperature is not well understood. To identify components involved in low-temperature signaling, we characterized the previously isolated chilling-sensitive2 mutant (chs2) of Arabidopsis (Arabidopsis thaliana). This mutant grew normally at 22°C but showed phenotypes similar to activation of defense responses when shifted to temperatures below 16°C. These phenotypes include yellowish and collapsed leaves, increased electrolyte leakage, up-regulation of PATHOGENESIS RELATED genes, and accumulation of excess hydrogen peroxide and salicylic acid (SA). Moreover, the chs2 mutant was seedling lethal when germinated at or shifted for more than 3 d to low temperatures of 4°C to 12°C. Map-based cloning revealed that a single amino acid substitution occurred in the TIR-NB-LRR (for Toll/Interleukin-1 receptor- nucleotide-binding Leucine-rich repeat)-type resistance (R) protein RPP4 (for Recognition of Peronospora parasitica4), which causes a deregulation of the R protein in a temperature-dependent manner. The chs2 mutation led to an increase in the mutated RPP4 mRNA transcript, activation of defense responses, and an induction of cell death at low temperatures. In addition, a chs2 intragenic suppressor, in which the mutation occurs in the conserved NB domain, abolished defense responses at lower temperatures. Genetic analyses of chs2 in combination with known SA pathway and immune signaling mutants indicate that the chs2-conferred temperature sensitivity requires ENHANCED DISEASE SUSCEPTIBILITY1, REQUIRED FOR Mla12 RESISTANCE, and SUPPRESSOR OF G2 ALLELE OF skp1 but does not require PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1, or SA. This study reveals that an activated TIR-NB-LRR protein has a large impact on temperature sensitivity in plant growth and survival.

URL:http://www.jstor.org/stable/20779833
Short Title:Plant Physiology
Fri, 2014-01-24 22:24 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith