IBIS-Flora

Angiosperm Flora of India

Genes mapping to boron tolerance QTL in barley identified by suppression subtractive hybridization

Publication Type:Journal Article
Year of Publication:2010
Authors:HASSAN, MAHMOOD, OLDACH, KLAUS, Baumann, U, Langridge, P, SUTTON, TIM
Journal:Plant, Cell & Environment
Volume:33
Issue:2
Date Published:2010
ISBN Number:1365-3040
Keywords:abiotic stress, boron toxicity tolerance, gene expression, heterologous expression, ROS, yeast
Abstract:

Boron tolerance is a quantitative trait controlled by multiple genes. Suppression subtractive hybridization was carried out on root cDNA from bulked boron tolerant and intolerant doubled haploid barley lines grown under moderate boron stress to identify genes associated with boron tolerance. One hundred and eleven clones representing known proteins were found to be up-regulated in the tolerant bulk upon boron stress. Nine clones were genetically mapped to previously reported boron tolerance QTL. These include a clone identical to the boron transporter gene Bot1 and a clone coding for a bromo-adjacent homology domain-containing protein, mapping to the 6H boron tolerance locus and co-segregating with reduced boron intake in a Clipper × Sahara-3771 mapping population. A third clone mapping to the 2H QTL region encoding an S-adenosylmethionine decarboxylase precursor was found to provide tolerance to high boron by heterologous expression. Yeast cells expressing Sahara SAMDC were able to grow on 15 mm boron solid media and maintained cellular boron concentrations at 13% lower than control cells expressing empty vector. The data suggest that an antioxidative response mechanism involving polyamines and the ascorbate–glutathione pathway in Sahara barley may provide an advantage in tolerating high soil concentrations of boron.

URL:http://dx.doi.org/10.1111/j.1365-3040.2009.02069.x
Short Title:Plant, Cell & Environment
Fri, 2014-01-24 22:38 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith