NO VEIN Mediates Auxin-Dependent Specification and Patterning in the Arabidopsis Embryo, Shoot, and Root

Publication Type:Journal Article
Year of Publication:2009
Authors:Tsugeki, R, Ditengou, FAnicet, Sumi, Y, Teale, W, Palme, K, Okada, K
Journal:The Plant Cell
Volume:21
Issue:10
Date Published:2009
ISBN Number:10404651
Keywords:cotyledon
Abstract:

Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independent mechanisms. Here, we show that the Arabidopsis thaliana NO VEIN (NOV) gene, encoding a novel, plant-specific nuclear factor, is required for leaf vascular development, cellular patterning and stem cell maintenance in the root meristem, as well as for cotyledon outgrowth and separation, nov mutations affect many aspects of auxin-dependent development without directly affecting auxin perception. NOV is required for provascular PIN1 expression and region-specific expression of PIN7 in leaf primordia, cell type-specific expression of PIN3, PIN4, and PIN7 in the root, and PIN2 polarity in the root cortex. NOV'is specifically expressed in developing embryos, leaf primordia, and shoot and root apical meristems. Our data suggest that NOV function underlies cell fate decisions associated with auxin gradients and maxima, thus establishing cell type-specific PIN expression and polarity. We propose that NOV mediates the acquisition of competence to undergo auxin-dependent coordinated cell specification and patterning, thereby eliciting context-dependent auxin-mediated developmental responses.

URL:http://www.jstor.org/stable/40537496
Short Title:The Plant Cell
Taxonomic name: 
Fri, 2014-01-24 22:48 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith