IBIS-Flora

Angiosperm Flora of India

Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field

Publication Type:Journal Article
Year of Publication:2011
Authors:Izawa, T, Mihara, M, Suzuki, Y, Gupta, M, Itoh, H, Nagano, AJ, Motoyama, R, Sawada, Y, Yano, M, Hirai, MYokota, Makino, A, Nagamura, Y
Journal:The Plant Cell
Volume:23
Issue:5
Date Published:2011
ISBN Number:10404651
Keywords:Oryza, Oryza sativa
Abstract:

The circadian clock controls physiological traits such as flowering time, photosynthesis, and growth in plants under laboratory conditions. Under natural field conditions, however, little is known about the significance of the circadian clock in plants. By time-course transcriptome analyses of rice (Oryza sativa) leaves, using a newly isolated rice circadian clockrelated mutant carrying a null mutation in Os-GIGANTEA (Os-Gl), we show here that Os-Gl controlled 75% (false discovery rate = 0.05) of genes among 27,201 genes tested and was required for strong amplitudes and fine-tuning of the diurnal rhythm phases of global gene expression in the field. However, transcripts involved in primary metabolism were not greatly affected by osgi. Time-course metabolome analyses of leaves revealed no trends of change in primary metabolites in osgi plants, and net photosynthetic rates and grain yields were not affected. By contrast, some transcripts and metabolites in the phenylpropanoid metabolite pathway were consistently affected. Thus, net primary assimilation of rice was still robust in the face of such osgi mutation-related circadian clock defects in the field, unlike the case with defects caused by Arabidopsis thaliana tod and ztl mutations in the laboratory.

URL:http://www.jstor.org/stable/41433427
Short Title:The Plant Cell
Fri, 2014-01-24 22:00 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith