IBIS-Flora

Angiosperm Flora of India

Photophysics and Photochemical Studies of the Vitamin B6 Group and Related Derivatives

Publication Type:Journal Article
Year of Publication:2010
Authors:Bueno, C, Pavez, P, Salazar, R, Encinas, MVictoria
Journal:Photochemistry and Photobiology
Volume:86
Issue:1
Date Published:2010
ISBN Number:1751-1097
Abstract:

The photophysics and photochemical properties of vitamin B6 constituents and analogs were studied as function of pH and solvent. The pK of the phenolic oxygen and the pyridine ring nitrogen depends on the electron donor-acceptor ability of the 4-substituent, and agrees with the calculated proton affinity. For all studied compounds, the fluorescence properties showed that the phenolic oxygen is 8 units more acidic in the lowest singlet excited state than in the ground state. The pyridine N-atom is slightly more basic in the excited state. At pH of biological significance, pH 6–8, pyridoxamine and 4-pyridoxic acid are the more efficient chromophores with higher fluorescence yield and longer lifetime. Spectroscopic studies showed that the tautomeric equilibrium depends on the nature of the 4-substituent. The quenching of the singlet excited state of pyridoxamine and 4-pyridoxic acid by amino acids, free or in a peptide, and DNA bases at pH 7 was studied by time-resolved fluorescence techniques. The quenching rate constants are well correlated with the redox properties of the pyridoxinic compound and amino acids, and are related to the free energy change in the electron transfer process. Guanosine and pyrimidine bases also are efficient quenchers, involving an electron transfer reaction.

URL:http://dx.doi.org/10.1111/j.1751-1097.2009.00643.x
Short Title:Photochemistry and Photobiology
Fri, 2014-01-24 22:40 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//flora.indianbiodiversity.org/sites/all/modules/patches/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith